
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2008; 57:1291–1320
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.1863

Analysis of a consistency recovery method for the
1D convection–diffusion equation using

linear finite elements

Prashanth Nadukandi1,∗,†, Eugenio Oñate1 and Julio Garcia1,2
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SUMMARY

For residual-based stabilization methods such as streamline-upwind Petrov–Galerkin (SUPG) and finite
calculus (FIC), the higher-order derivatives of the residual that appear in the stabilization term vanish
when simplicial elements are used. The sub-grid scale method using orthogonal sub-scales (OSS) attempts
to recover the lost consistency by using a fine-scale projected residual in the stabilization term. The FIC
method may also be cast into an OSS form with very little manipulation using an auxiliary convective
projection equation. This paper discusses the gain/loss by recovering the consistency of the discrete
residual in the stabilization terms via the form that includes the convective projection (as in the OSS
method). We present the von Neumann analysis of the FIC method with recovered consistency (FIC RC)
for the 1D convection–diffusion problem and we compare it with the standard Bubnov–Galerkin linear
finite element method and FIC/SUPG methods. The transient analysis is done by examining the discrete
dispersion relation of the stabilization methods. The spectral results for the semi-discrete and fully
discrete problem are presented with time integration done by the trapezoidal and second-order backward
differencing formula schemes. The effect of lumping the effective mass matrix T is considered relative to
using a consistent form. The effect of refinement in space and time is also discussed. Finally, an optimal
expression for the stabilization parameter for the FIC RC method on a uniform grid and for the steady
state is given and its performance in the transient mode is discussed. Copyright q 2008 John Wiley &
Sons, Ltd.

Received 14 November 2007; Revised 14 May 2008; Accepted 19 May 2008

KEY WORDS: finite element; stabilized methods; finite calculus; consistent discrete residual; discrete
dispersion relation

∗Correspondence to: Prashanth Nadukandi, International Center for Numerical Methods in Engineering (CIMNE),
Universidad Politecnica de Catalunya (UPC), Edificio C1, Gran Capitan s/n, 08034 Barcelona, Spain.

†E-mail: npras@cimne.upc.edu

Contract/grant sponsor: Ministry for Science and Education

Copyright q 2008 John Wiley & Sons, Ltd.



1292 P. NADUKANDI, E. OÑATE AND J. GARCIA

1. INTRODUCTION

In many transport processes arising in physical problems, convection essentially dominates diffu-
sion. The design of numerical methods for such problems, which reflect their almost hyperbolic
nature and guarantee that the discrete solution satisfies the physical conditions, is a subject that has
been widely studied. In particular, for the convection–diffusion problem, the standard Galerkin finite
element method (FEM) leads to numerical instabilities for the convection-dominated case. Several
stabilization methods, for instance, the streamline-upwind Petrov–Galerkin (SUPG), Galerkin least-
square, sub-grid scale (SGS), SGS with orthogonal sub-scales (OSS) etc., have been designed to
overcome this numerical instability. A thorough comparison of some of these methods from the
point of view of their formulation and the motivations that lead to them can be found in [1].
Stabilization procedures based on finite calculus (FIC) have also been developed as a general-
purpose tool for improving the stability and accuracy of the convection–diffusion problem [2–5].
A residual correction method based on FIC was presented in [6] and is shown to yield a formulation
equivalent to an OSS form [7] with very little manipulation.

For the convection–diffusion problem using the SUPG or FIC methods, the higher-order
term (here the diffusion term) that appears in the stabilization term vanishes when simplicial
elements are used. In [6] it is shown that for the elasticity problem, the form that includes the
projected gradient of pressure into the stabilization terms (motivated by the OSS method) is
essential to obtain accurate numerical results that converge in a more monotone manner and
are less sensitive to the value of the stabilization parameter. In [8] a method was presented
to globally reconstruct a continuous approximation to the diffusive flux for linear FEs using
an L2 projection and it was shown, in some cases (when advection and diffusion are on
par), to greatly improve accuracy. It is important to note that again this improved accuracy
is demonstrated for other related unknowns of the problem (such as pressure) and not for the
transported unknown (say velocity). In addition, when convection dominates diffusion, there
is little effect in the inclusion of the recovered diffusive flux. On the other hand, consistency
recovery following the OSS philosophy is independent from the diffusive term. These observations
are the motivation to investigate in detail the benefits of including similar projections for the
convection–diffusion problem following the OSS philosophy. In other words, we try to answer
the question—what do we gain/lose by recovering the consistency of the discrete residual in the
stabilization terms for the convection-dominated case via the introduction of OSS-type convective
projection?

The von Neumann analysis for the Galerkin and SUPG methods is relatively well known
[9]. Relevant literature on the type of analysis presented here may be found in [10]. First, we
present the von Neumann analysis for the 1D FIC method with recovered consistency (FIC RC).
This is achieved by including the convective projection into the stabilization term (motivated
by the OSS method). It is then shown that in 1D the FIC and FIC RC methods are equivalent
to the SUPG and OSS methods, respectively. Consequently, the comparisons made between the
former methods may be carried over to the latter methods. The transient analysis is done by
examining the discrete dispersion relation (DDR) of the stabilization methods. The explanation
for the occurrence of wiggles/oscillations in the transient evolution of the numerical solution was
given by examining the dispersion relations of the continuous and discrete problems in [11]. It
has been found that beyond a certain wave number �d, the continuous and the discrete dispersion
relations diverge [11, 12]. This wave number (�d) is referred to as the phase departure wave
number in [12]. If the bandwidth of the amplitude spectra of any given initial function has wave
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numbers greater than �d, the initial function suffers a change of form (with wiggles/oscillations)
in its transient evolution. Examining the respective DDRs, we seek to find if the stabilization
methods provide any improvements in the solutions. A comparison of the DDR of the FIC RC/OSS
method is done with the DDRs of the Galerkin and FIC/SUPG methods for three standard time
integration schemes. In addition, the range of wave numbers to which the DDR agrees with the
continuous dispersion relation is shown to extend, should a consistent ‘effective’ mass matrix be
preferred to a lumped one. Next, it is shown that unlike the FIC/SUPG method, the FIC RC/OSS
method introduces a certain rearrangement in the equation stencils at nodes on and adjacent to the
domain boundary. Thus, using a uniform expression for the stabilization parameter (�) will lead
to enhanced localized oscillations at the boundary. For the 1D steady-state problem, we present a
new expression for �, which is optimal for uniform grids and provides negligible damping when
used in the transient mode. Unfortunately for non-uniform grids, it leads to weak node-to-node
oscillations.

2. TRANSIENT CONVECTION–DIFFUSION EQUATION

2.1. Problem statement

The statement of the multi-dimensional problem is as follows:

��

�t
+u·(∇�)−∇·(k∇�)− f =0 on � (1a)

�(x, t=0)=�0(x) on � (1b)

�=�p on �D (1c)

k∇� ·n=qp on �N (1d)

where u is the convection velocity, k is the diffusion, f is the source, �(x, t) is the transported
variable, �0(x) is the initial solution, �p and qp are the prescribed values of � and the diffusive
flux at the Dirichlet and Neumann boundaries, respectively. The FIC formulation of this problem
(neglecting the time stabilization terms [4]) is as follows:

r− 1
2h·∇(r)=0 on � (2a)

�(x, t=0)=�0(x) on � (2b)

�h =�p on �D (2c)

k∇�h ·n+ 1
2h·nr =qp on �N (2d)

r := ��

�t
+u·(∇�)−∇·(k∇�)− f (2e)
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Let (·, ·) and (·, ·)�N denote the L2(�) and L2(�N) inner products, respectively. The variational
form of problem (1) can be expressed as follows:

Find �∈H1
0 (�) such that ∀w∈H1

0 (�),

a(w,�)= l(w) (3a)

a(w,�) :=
(

w,
��

�t

)
+(w,u·∇�)+(∇w,k∇�) (3b)

l(w) :=(w, f )+(w,qp)�N (3c)

For the FIC equations, the variational form can be expressed as follows:
Find �∈H1

0 (�) such that ∀w∈H1
0 (�),

a(w,�)+ 1
2 (∇·(hw),r)= l(w) (4)

The calculation of the residual contribution in the stabilization term can be simplified if we
introduce the projection of the convective term � via an auxiliary equation defined as

�=u·∇�−r (5)

We express the residual, r , that occurs in the stabilization term (∇·(hw),r) as a function of �.
Thus, � becomes an addendum to the set of unknowns to be found. The integral equation system
is now augmented, forcing the residual r expressed in terms of � using Equation (5) to vanish (in
average) over the analysis domain. Problem (4) after the addendum of the convective projection �
is expressed as follows:

Find (�,�)∈(H1
0 (�),H1(�)) such that ∀(w, z)∈(H1

0 (�),H1(�)),

a(w,�)+ 1
2 (∇·(hw),u·∇�)− 1

2 (∇·(hw),�)= l(w) (6a)

(z,�)=(z,u·∇�) (6b)

We remark that the projection of the convective term provides consistency to the formulation, i.e.
the system of equations (6) have the residual form that vanishes for the exact solution. Henceforth,
we refer to the formulation given by Equation (6) as the FIC formulation with recovered consistency
(FIC RC). The convective projection is expected to capture the otherwise lost effect of higher-
order terms in the residual when simplicial elements are used. The introduction of the convective
projection variable � was deduced from an OSS approach in [7].
2.2. Dispersion relation in 1D

Any equation that admits plane wave solutions of the form exp[i(�t−�x)], but with the property
that the speed of propagation of these waves is dependent on �, is generally referred to as a
dispersive equation. Here �, � are the angular wave number and the frequency, respectively. The
equation that expresses � as a function of � is known as the dispersion relation. Generally, the
transient convection–diffusion equation is a dispersive equation. In the limit, when diffusion tends
to zero and the equation morphs into a pure convection problem, it tends to become non-dispersive
[11]. In 1D and for the sourceless case ( f =0), Equation (1a) can be expressed as follows:

��

�t
+u

��

�x
−k

�2�

�x2
=0 (7)
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For a given discretization of size � in space and an increment � in time, we express the Courant and
Peclet numbers as C=u�/� and �=u�/2k. We write down the dispersion relation (Equation (8)) for
the continuous problem (Equation (7)) by propagating the plane wave solution �=exp[i(�t−�x)].
From Equation (8) we obtain, taking the limit k→0 or �→∞, the dispersion relation for the pure
convection problem

�=u�+ ik�2 (8a)

��=C(��)+ i
C

2�
(��)2 (8b)

Now let us consider the amplification of the solution from time step n to n+1 and at some
given spatial point. The amplification parameter � as defined in [12] is given by Equation (9). It
can be clearly seen that � is stationary in time and uniform in space. The amplification and phase
shift per time step are given by the magnitude and argument of Equation (9), respectively. Thus,
for the pure convection problem we can see that the amplification is unity, i.e. |�|=1. The phase
and group velocities are given by Equations (10a) and (10b), respectively, [13]

�= �n+1
j

�n
j

=exp[i��]=exp[−k��2]exp[iu��]=exp

[
− C

2�
(��)2

]
exp[iC(��)] (9)

Vp(�)= �(�)

�
(10a)

Vg(�)= ��(�)

��
(10b)

3. FE DISCRETIZATION

3.1. Semi-discrete form

The semi-discrete (continuous in time, discrete in space) counterpart of the FIC method (4) can
be written as follows:

Find �∈H1
0 (�) such that ∀w∈H1

0 (�),

a(wh,�h)+
∑
e

1

2
(∇·(hwh),rh)�e = l(wh) (11)

The stabilization term in Equation (11) has been expressed as a sum of the element contributions
to allow for inter-element discontinuities in the term ∇(rh) of Equation (2), where rh :=r(�h) is
the residual of the FE approximation of the infinitesimal governing equation and (·, ·)�e denote
the L2(�e) inner product. Similarly, the discrete counterpart of the FIC RC method (6) can be
expressed as

Find (�,�)∈(H1
0 (�),H1(�)) such that ∀(w, z)∈(H1

0 (�),H1(�)),

a(wh,�h)+
∑
e

1

2
(∇·(hwh),u·∇�h)�e −∑

e

1

2
(∇·(hwh),�h)�e = l(wh) (12a)

(zh,�h)=(zh,u·∇�h) (12b)
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The variables in Equations (11) and (12) interpolated by the FE shape functions Na can be
expressed as follows:

�h =Na�̄
a
, �h =Na �̄a, wh =Naw̄a, zh =Naz̄a (13)

The discrete problems (11) and (12) can be written in matrix notation using Equations (14)
and (15), respectively, as follows:

[M+S2]· ˙̄�+[C+D+S1+S3]·�̄= fg+fs (14)

M· ˙̄�+[C+D+S1]·�̄−S2 ·�̄= fg (15a)

M·�̄−C ·�̄=0 (15b)

where the element contributions to the above matrices and vectors are given by

Ce
ab=(Na,u·∇Nb)�e , De

ab=(∇Na,k∇Nb)�e (16a)

Me
ab=(Na,Nb)�e , S1eab= 1

2 (∇·(hNa),u·∇Nb)�e (16b)

S2eab= 1
2 (∇·(hNa),Nb)�e , S3eab=− 1

2 (∇·(hNa),∇·(k∇Nb))�e (16c)

fgea =(Na, f )�e +(Na,qp)�N, fsea = 1
2 (∇·(hNa), f )�e (16d)

Note that Equation (15b) corresponds to the L2-projection of the term u·∇(�h) onto the space
spanned by the shape functions. Whenever the latter term admits discontinuities, the projection
is non-monotone [7]. A monotone projection of the convective term can be achieved if the mass
matrix M that appears in Equation (15b) is lumped. In addition, the expression for � will also
have local support only when M is lumped. This feature allows us to study generic nodal equation
stencils for the interior of the domain. Henceforth, we always consider Equation (15b) with M
lumped. Equations (14) and (15) may be expressed in a general form as shown in Equation (17).
Table I defines the corresponding matrices for the FIC and FIC RC methods

T · ˙̄�+[C+D+S]·�̄= f (17)

where matrix T is the ‘effective’ mass matrix.
Note that for the direction of h being the same as that of the velocity u, i.e. h=2	u and

assuming 	 constant within an element, the form of the stabilization term (∇·(hwh),rh)�e in
Equation (11) is identical to that of the standard SUPG method. Thus, with this choice of h the
FIC and FIC RC methods are identical to the SUPG and OSS methods, respectively. The general
direction of h naturally introduces stabilization along the streamlines and also along the directions

Table I. Matrix definitions for the FIC and FIC RC methods.

FIC FIC RC

T-lumped ML +S2 ML
T-consistent M+S2 M
S S1+S3 S1−S2 ·M−1

L ·C
f fg+fs fg
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of the gradient of the solution transverse to the velocity vector. The FIC formulation therefore
incorporates the best features of the SUPG and the shock-capturing methods. Applications of the
FIC-FEM formulation to a wide range of convection–diffusion problems with sharp gradients are
presented in [14]. We remark that in 1D (assuming h to be constant within an element) the FIC
and the FIC RC methods are identical to the SUPG and OSS methods, respectively. Thus, the
comparisons made between the FIC and FIC RC methods may be carried over to those between
the SUPG and OSS methods.

3.2. DDR in 1D

The DDR of the semi-discrete problem (semi-DDR) and when the temporal terms are discretized
using two classes of time discretization schemes are investigated in this section. The time discretiza-
tion schemes considered are the trapezoidal scheme and the second-order backward differencing
formula (BDF2). The effects on the numerical dispersion due to the choice of the form of the
effective mass matrix T (lumped or consistent) in Equation (17) are also studied. The flag lumped
or consistent refers only to matrix T as defined in Table I for the FIC and FIC RC methods.
The DDRs are written by inserting a plane wave solution of the form �=exp[i(�t−�x)] into
the corresponding equation stencils. Taking the limit �→∞, we recover the DDR for the pure
convection problem.

3.2.1. Semi-DDR. We study the equation stencil for an interior node of the semi-discrete problem
given by Equation (17) with f =0 in 1D. For a compact representation of the stencils, we introduce
the following definition:

(�) :=
(u
2

)
(� j+1−� j−1)−

(
k

�
+ u�

2

)
(� j+1−2� j +� j−1) (18)

FIC/SUPG method:(
�

6

)[(−3�

2

)
�̇ j+1+6�̇ j +

(
3�

2

)
�̇ j−1

]
+(�)=0 T-lumped (19a)

(
�

6

)[(
1− 3�

2

)
�̇ j+1+4�̇ j +

(
1+ 3�

2

)
�̇ j−1

]
+(�)=0 T-consistent (19b)

FIC RC/OSS method:

��̇ j +(�)+
(u�

8

)
(� j+2−2� j +� j−2)=0 T-lumped (20a)

(
�

6

)
(�̇ j+1+4�̇ j +�̇ j−1)+(�)+

(u�

8

)
(� j+2−2� j +� j−2)=0 T-consistent (20b)

Making �=0 in Equations (19) and (20), we recover the standard Galerkin method. The semi-
DDRs for all the methods and for the T-lumped, T-consistent cases can be expressed in a generic
and compact manner as follows:

�h =−i
B

�A
(21)
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where

A :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

C
Galerkin, FIC RC/OSS methods, T-lumped

2+cos(��)

3C
Galerkin, FIC RC/OSS methods, T-consistent

1

C
+ i

�

2C
sin(��) FIC/SUPG methods, T-lumped

2+cos(��)

3C
+ i

�

2C
sin(��) FIC/SUPG methods, T-consistent

(22a)

B :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i sin(��)−2sin2
(

��

2

)(
1

�

)
Galerkin method

isin(��)−2sin2
(

��

2

)(
1

�
+�

)
FIC/SUPG methods

isin(��)−2sin2
(

��

2

)(
1

�
+�sin2

(
��

2

))
FIC RC/OSS methods

(22b)

3.2.2. Trapezoidal scheme. The structure of the equation stencil for an interior node with respect
to the spatial indices is the same as in the semi-discrete problem. Henceforth, we express the fully
discrete system in the matrix notation only

T · �
n+1−�n

�
+[C+D+S]·�n+
 =O (23a)

�n+
 :=
�n+1+(1−
)�n (23b)

Making 
={0,0.5,1} we recover the forward Euler, Crank–Nicholson and backward Euler
schemes, respectively. The DDR for the trapezoidal scheme can be expressed in terms of A and B
defined in Equation (22) as follows:

exp[i�h�]= A+(1−
)B

A−
B
or equivalently (24a)

tan

(
�h�

2

)
=−i

B

2A+(1−2
)B
(24b)

3.2.3. BDF2 scheme. The fully discrete system of equations after time discretization by the BDF2
scheme is given by

T · 3�
n+1−4�n+�n−1

2�
+[C+D+S]·�n+1=O (25)
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The DDR for the BDF2 scheme is a quadratic relation in exp[i�h�]. The solution to the quadratic
equation gives two expressions for the DDR, which can be expressed as follows:

exp[i�h�]= 2A+√
A2+2AB

3A−2B
(26a)

exp[i�h�]= 2A−√
A2+2AB

3A−2B
(26b)

We remark that the solution given by Equation (26b) predicts negative values of �(�h) for
positive wave numbers. Thus, we consider the solution given by Equation (26a) as the only
acceptable solution.

3.3. DDR plots

The DDRs presented in the previous section represent the frequency as a function of six independent
variables, i.e. �h :=�h(�,�,�,C,�,�). For a feasible graphical representation of the DDRs, we
freeze some of them and normalize the frequency and wave numbers to retain maximum generality.
In the DDR plots, we consider only the pure convection problem (k=0). The stabilization parameter
�=1.0 is chosen. This corresponds to the optimal value for the SUPG/FIC method in 1D and
for a uniform mesh. This choice is made for convenience and comparison of the effects of the
stabilization term introduced by the considered methods. Note that the DDRs are periodic in �
and the corresponding fundamental domain is �∈[−�/�,�/�]. The Nyquist frequency in space is
�nq=�/� and in time is �nq=�/�. Thus in the DDR plots, we do not consider wave numbers and
frequencies beyond the Nyquist limits. It can be shown with respect to the exact dispersion relation
(Equation (8)) that this condition corresponds to choosing C�1. We normalize the wave number
� by the Nyquist limit �nq, i.e. �∗ =�/�nq. The frequency �h is normalized as �∗

h =�h/(u�nq)=
�h�/(C�)=�h�/(u�). The DDRs are now expressed with respect to the normalized wave number
and frequency, i.e. �∗

h :=�∗
h(�

∗,C). The plotting domain considered is (�∗,C)=(0,1)×(0,1).

3.3.1. Semi-discrete. For the semi-discrete problem, the DDR no longer depends on �. The
frequency �∗

h is now only a function of �∗, i.e. �∗
h :=�∗

h(�
∗). The amplification at time tn =n�

is given by exp[−�(�h)tn]=exp[−�(�∗
h)�(utn/�)]=exp[−�(�∗

h)�Cn]. This means that should
�(�∗

h) 	=0 the amplification at any given time is independent of the time step � but dependent on
the space discretization �. Thus, we present 1D plots for the following:

• Plot of �(�∗
h) vs �∗: The departure wave number �∗

d is marked such that ∀�∗��∗
d we have

|�(�∗−�∗
h)|�0.001.

• Amplification plots using C=0.1 and at times �,2�,100�,200�, and 300�s.

3.3.2. Fully discrete. For the fully discrete case, the time integration schemes considered are the
backward Euler, Crank–Nicholson, and BDF2. The frequency is now a function of both �∗ and
C , i.e. �∗

h :=�∗
h(�

∗,C). The amplification at time tn =n� is given by exp[−�(�∗
h)�(utn/�)], the

same as for the semi-discrete case except for the fact that �∗
h is now dependent on C also. Contour

plots are presented for the following:

• log10(|�(�∗−�∗
h)|) vs (�∗,C): The contour of values {−5,−4,−3,−2,−1} are shown.

• log10(�(�∗
h)) vs (�∗,C): The contour of values {−3,−2.5,−2,−1.5,−1,−0.5,0} are

shown.
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Only the contour plots for the normalized group velocity, i.e. ��∗
h/��∗ vs (�∗,C), for the

Crank–Nicholson scheme have been presented. The original group velocity can be recovered as
follows: ��h/��=u��∗

h/��∗ (Figures 1–9).

4. STABILIZATION PARAMETERS

In this section, we propose optimal values for the stabilization parameters for the FIC RC method
in 1D and on a uniform mesh. We consider the steady-state form of the discrete problem (17) for
the sourceless case ( f =0). The equation stencil for an interior node j is as follows:

(u
2

)
[� j+1−� j−1]−

(
k+ uh

2

)[
� j+1−2� j +� j−1

�

]
+

(
uh

8

)[
� j+2−2� j +� j−2

�

]
=0 (27)

The analytical solution of the steady-state form of problem (17) in the 1D space with only
Dirichlet boundary conditions and source f =0 is

�(x)=�p
l +(�p

r −�p
l )

[
exp[ux/k]−1

exp[uL/k]−1

]
(28)

where L is the length of the 1D domain and �p
l , �p

r are the prescribed values of � at the left and
right ends of the domain, respectively. We now express the characteristic length in terms of the
element size as h=��. The optimal value of the stabilization parameter � is found by substituting
the analytical solution into the stencil given in Equation (27). This leads to the following expression
of � for the interior nodes:

�= −1

sinh2(�)

[
coth(�)− 1

�

]
(29)

where � is the element Peclet number given by �=u�/2k. The plot of the parameter � vs � is
shown in Figure 10.

It can be seen that �≈0 for ��3. Hence, for high Peclet numbers the formulation suggests using
very small values of �. That is, for large values of � the formulation breaks down into the standard
Galerkin method without stabilization and one can expect spurious oscillations in the numerical
solution. The clues to reason out this behavior can be found by examining the assembly of the
linear system.

The 1D problem is discretized by linear elements and the final form of the FE assembly is
examined. For simplicity, the nodes are numbered from left to right as shown in Figure 11. For
the interior nodes, the equation stencil is as given by Equation (27). For the left penultimate
boundary node, here node 2 as per the numbering scheme (Figure 11), we find the following
stencil:

(u
2

)
[�3−�1]−

(
k+ uh

2

)[
�3−2�2+�1

�

]
+

(
uh

8

)[
�4−3�2+2�1

�

]
=0 (30)
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Figure 1. Plot of �∗
h vs �∗ for the semi-discrete problem. Frequencies �∗ and �∗

h correspond to the
continuous and discretized problems, respectively. �=1.0 is used.
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Figure 2. Amplification plots of the semi-discrete problem for the FIC/SUPG and FIC RC/OSS methods.
�=1.0 and C=0.1 are used. The amplification for the Galerkin method is not shown here as it is equal to 1.

For the right penultimate boundary node, i.e. the node n in Figure 11, we find the following
stencil:

(u
2

)
[�n+1−�n−1]−

(
k+uh

2

)[
�n+1−2�n+�n−1

�

]
+

(
uh

8

)[
2�n+1−3�n+�n−2

�

]
=0 (31)

Thus, we see that there is a rearrangement of the equation stencils for the nodes that lie next to
the boundary. The stencils for the boundary nodes also get rearranged, but we do not consider them
here as the focus here is to deal with problems with Dirichlet boundary conditions. The deviation
of the nodal equations for the penultimate nodes from the interior nodes is responsible for the
spurious oscillations. It has been shown using a spectral analysis framework in [15, 16] that the
asymmetry in the stencils brings about anti-diffusion even when they are used with central difference
schemes and their effect is not localized, thus being responsible for spurious numerical oscillations.
A simpler explanation would be that the rearrangement of the stencils near the boundary require
different expressions for the stabilization parameter for those nodes.
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Figure 3. Contour plot of log10[�(|�∗
h−�∗|)] for the backward Euler scheme. �=1.0 is used.
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Figure 4. Contour plot of log10[�(�∗
h)] for the backward Euler scheme. �=1.0 is used.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1291–1320
DOI: 10.1002/fld



ANALYSIS OF A CONSISTENCY RECOVERY METHOD 1305

Figure 5. Contour plot of log10[�(|�∗
h−�∗|)] for the Crank–Nicholson scheme. �=1.0 is used.
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Figure 6. Contour plot of log10[�(�∗
h)] for the Crank–Nicholson scheme. �=1.0 is used. The plots for

the Galerkin method is not shown here as �(�∗
h)=0.

The optimal values of the stabilization parameters for these penultimate nodes on a uniform
mesh are as follows. Equations (32a) and (32b) correspond to the optimal values for the nodes 2
and n, respectively. Figure 12 illustrates the variation of � with respect to �

�2= 4

[2−e2�]
[
coth(�)− 1

�

]
(32a)

�n = 4

[2−e−2�]
[
coth(�)− 1

�

]
(32b)

An alternative to nodal stabilization parameters is to find optimal values of the stabilization
parameters for the elements adjacent to the boundary. For elements lying in the domain interior,
we use the value given by Equation (29). Denoting the stabilization parameters for elements 1, n
and in the domain interior as �(1), �(n) and �, respectively, we find the following equation stencils.
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Figure 7. Contour plot of log10[�(|�∗
h−�∗|)] for the BDF2 scheme. �=1.0 is used.
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Figure 8. Contour plot of log10[�(�∗
h)] for the BDF2 scheme. �=1.0 is used.
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Figure 9. Real part of the normalized group velocity ��∗
h/��∗ vs �∗ for

the Crank–Nicholson scheme; �=1.0 is used.
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Figure 10. � vs � for interior nodes.

Figure 11. Node stencil for the 1D problem.

Figure 12. � vs � for penultimate boundary nodes.
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Figure 13. � vs � for elements adjacent to the boundary.

Node 2:

(u
2

)
[�3−�1]−

(
k

�

)
[�3−2�2+�1]−

(u
2

)
[��3−(�(1)+�)�2+�(1)�1]

+
(u
8

)
[��4+(�−�(1))�3−(�+2�(1))�2+(3�(1)−�)�1]=0 (33)

Node n:

(u
2

)
[�n+1−�n−1]−

(
k

�

)
[�n+1−2�n+�n−1]−

(u
2

)
[�(n)�n+1−(�(n)+�)�n+��n−1]

+
(u
8

)
[(3�(n)−�)�n+1−(�+2�(n))�n+(�−�(n))�n−1+��n−2]=0 (34)

The optimal values for �(1) and �(n) are given by Equations (35a) and (35b), respectively.
Figure 13 illustrates the variation of � with respect to �

�(1) = 4

[1−e2�]
[
coth(�)− 1

�

]
(35a)

�(n) = 4

[1−e−2�]
[
coth(�)− 1

�

]
(35b)

It is important to note that � is a signed parameter. The sign of � is the same as that of the
Peclet number �, which in turn is related to the sign of the velocity u. In addition, for the domain
interior, � is negative for positive values of �!
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5. DISCUSSION

It can be seen from the DDR plots that every discrete model and also the semi-discrete model of
the continuous problem diverge from the exact dispersion relation beyond a certain wave number,
here �∗

d (Figures 1, 3, 5 and 7). For the semi-discrete case, �∗
d is marked in the plots and for the

fully discrete case �∗
d is a contour line given by the value −3. �∗

d is greater when we use a consistent
mass matrix for the transient terms in the formulation. Thus, one should expect better phase fidelity
over a wider range of wave numbers using a consistent mass matrix. The gain in the value of �∗

d
from the lumped T case to the consistent T case gradually decreases as the Courant number C
increases (except for a certain range of the Courant number C for the FIC/SUPG method).

We now examine the differences in the DDR plots between the Galerkin method and the DDR
plots of the FIC/SUPG and FIC RC/OSS methods. It is interesting that the stabilization terms
introduced by the FIC RC/OSS method do not alter much the location of the phase departure
wave number �∗

d. On the other hand, the stabilization terms introduced by the FIC/SUPG method
contribute to the T matrix (Table I). Although for higher Courant number C the effect on the
location of �∗

d is negligible, significant alterations in �∗
d are found for a lower C and a consistent

T matrix (Figures 3, 5 and 7). When T is lumped, all the methods give similar patterns for �∗
d,

indicating that stabilization terms have no role to play in the improvement of the DDRs.
Next, we examine the effect of the variation in C on the �(�∗

h) vs �∗ relation for the FIC and
SUPG methods with consistent T matrix and the Crank–Nicholson scheme. Again, we choose
�∗
d using the criterion ∀�∗��∗

d we have |�(�∗−�∗
h)|�0.001. In Figure 5, this corresponds to

the contour line for the value −3. It can been seen in the semi-discrete case that �(�∗
h)>�(�∗)

for lower wave numbers (Figure 1). In addition, the error �(�∗
h−�∗) first increases and later

decreases. This behavior is exhibited in the fully discrete case too. Thus, there will be multiple
contours of the same value in the log10(|�∗

h−�∗|) vs (�∗,C) contour plots. In this case, �∗
d is the

smallest �∗ on the contours. For instance, choosing C=0.4 for the FIC and SUPG methods we
find �∗

d≈0.35, where as for the Galerkin, FIC RC and OSS methods we find �∗
d<0.2 (Figure 5).

Thus, there is a significant improvement in the DDR for the FIC and SUPG methods for this
value of C . It is interesting to note that for C�0.1, the variation of DDR with C is insignificant.
A similar conclusion can be made for the backward Euler and BDF2 schemes from their respective
DDR plots.

It can be seen from the amplification plots (Figures 2, 4, 6 and 8) that for the same value of �
(here �=1.0) and using a consistent T matrix, the damping associated with the FIC/SUPG method
is relatively less than that of the FIC RC/OSS method, though the gain is not significant for low
wave numbers. On the other hand, using a lumped T matrix the difference in the amplification
associated with FIC/SUPG and FIC RC/OSS methods is insignificant. It can also be seen that
unlike the notable differences in the location of �∗

d, the differences in the amplification due to
lumping the T matrix are insignificant.

An important aspect is the effect of group velocity. This is more evident when the transported
function is periodic and resembles a sinusoid wave train. For such functions, the Fourier transform
is a narrow peak concentrated around the characteristic angular wave number of the function. For
such problems, the effect of the group velocity is more significant than that of phase velocity.
If the DDR predicts a deviation in the group velocity, then the wave train travels at that deviant
velocity (Example 6.3).

Finally, we note that the optimal value of the stabilization parameter � on a uniform grid for
the FIC RC/OSS method is close to zero everywhere within the domain interior (Figure 10). The
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optimal � is negative for positive values of �. We have also seen that due to a certain rearrangement
of the equation stencils at the boundary, the expression for the optimal value of � is different for
the boundary-adjacent elements (Figure 13). This is a favorable condition as we do not introduce
any artificial (unnatural) damping anywhere within the domain, thus enhancing the accuracy of
the numerical solution. The effect of boundary shock layers can also be captured efficiently by the
new values of � at the boundary-adjacent elements. Thus, we see that in the transient mode the
performance of the FIC RC/OSS method using the proposed optimal � with boundary correction
is similar to the standard Galerkin method. The former method also gives nodally exact solutions
(on uniform grids) in the steady-state mode unlike the spurious global oscillations produced by the
latter method. Of course, all these features are favorable addenda only if the bandwidth of the ampli-
tude spectra of the transported function lies within the range of the phase departure wave number.

6. NUMERICAL EXAMPLES

6.1. Example 1

In this example, we study the effect of the stabilization introduced by the FIC/SUPG and
FIC RC/OSS methods for transient problems. We study the pure convection problem primarily
for two reasons. First, the problem becomes simple as the dispersion effects of natural diffusion
are sidelined, thus allowing us to study the effects of the diffusion introduced by the stabiliza-
tion methods. Next, the convection-dominated problem is the primary concern of stabilization
methods. The domain of interest is x ∈[0,10]. The problem data are k=1×10−30, u=1.0, time
increment �=0.01 and the 1D space is discretized by 100 linear elements with uniform mesh size.
Thus, �=0.1. The Peclet number for this problem is �=5×1028 (�≈∞). The Courant number
is C=0.1. We have also chosen �=1.0, the optimal value for SUPG in this case, throughout the
simulations. This choice is made just to study the effect of the artificial diffusion introduced by
the FIC RC/OSS method within the interior of the domain using a non-optimal value for �. Recall
that the optimal value of � for the FIC RC/OSS method in this case is ≈0, thus behaving very
similar to the standard Galerkin method in the domain interiors. The discretization in time is done
by the following schemes: Crank–Nicholson, backward Euler, and BDF2 schemes.

Figure 14 shows the results obtained when a narrow Gaussian pulse centered at x=3.0 is
taken as the initial solution. The equation for the initial solution is �0(x)=exp[−8(x−3)2]. The
numerical solution at time 3 s is examined. The solutions obtained using a lumped and consistent
T matrix in the formulation are also examined. The idea is to validate the conclusions that can be
drawn from the DDR plots. The pulse width of the Gaussian function is chosen so as to guarantee
that the bandwidth of the amplitude spectra of this function is just less than �consistentd , the phase

departure wave number using a consistent T matrix. As �lumped
d ��consistentd , one should expect

incorrect superpositions of the wave trains due to their phase differences from the former. This
leads to a train of wiggles as seen in the numerical solution when T is lumped (Figure 14).

It is interesting that the standard Galerkin method without any stabilization and by using a
consistent T matrix yields very accurate results. The other methods using a consistent T create a
slight bump at the foot of the Gaussian bell. This is because of the damping associated with those
methods for the significant wave numbers (�∗��∗

d). We also notice that using a consistent T, the
damping associated with the FIC/SUPG method is less than that for the FIC RC/OSS method.
The differences are insignificant for the T-lumped case.
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Figure 14. Gaussian pulse: solution at 3 s for the Galerkin, FIC/SUPG and FIC RC/OSS methods using a
lumped (on left) and consistent (on right) T matrices; time discretization is performed by Crank–Nicholson,

backward Euler and BDF2 schemes. �=1.0 is used.
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6.2. Example 2

In this example, we illustrate the effect of the variation of the Courant number on the DDR. The
problem data are the same as in Example 6.1. Time integration is performed by the Crank–Nicholson
scheme. Two initial functions are considered: a narrow Gaussian pulse centered at x=3.0 as defined
in Example 6.1 and a square pulse function defined by �0(x)=1.0 if x ∈[2,4] else �0(x)=0.0.
The spectra of the square pulse is broad and the bandwidth extends beyond the �d of all the
methods considered here. In other words, in the absence of damping this function will exhibit
numerical dispersion. In this example, only the consistent T matrix is used.

First, we note that for the higher Courant number (here C=1.0), the Gaussian pulse exhibits
numerical dispersion even when a consistent T matrix is used (Figure 15). As C is reduced to
0.4 and 0.1, we notice that the dispersion errors are minimized. As discussed earlier in Section 5,
the FIC/SUPG method with C=0.4 should exhibit a better performance over the FIC RC/OSS
method. Unfortunately, the gain in the DDR for the higher wave numbers does not materialize in
the simulated results. The solutions for the FIC/SUPG and the FIC RC/OSS methods are nearly
the same for both the initial solutions (Figure 15). This is because all those wave numbers suffer
high damping. As �(�∗

h) does not vary with C (Figure 6), Figure 2 may be referred for the
amplification.

6.3. Example 3

In this example we study the transport of a periodic sine wave with angular wave number �0=7.5.
The problem data are the same as in Example 6.1. The corresponding value of �∗ =0.238. Time
integration is performed by the Crank–Nicholson scheme. The idea here is to study the effect of
the group velocity in the numerical simulation. The initial function and the boundary condition
prescribed at the left boundary are as follows:

f (x,0)=sin(�0x) (36)

f (0, t)=sin(u�0t) (37)

The DDR predicts a group velocity V lumped
g ≈0.75 and V consistent

g ≈1.0 for �∗ =0.238 using
lumped and consistent T matrices, respectively (Figure 9). This property is exhibited in the
numerical solution where we find that the wave train moves at a different speed from the one
assigned. The results are accurate using a consistent T matrix (Figure 16). The damping introduced
by the stabilization methods is also in agreement with the one predicted by the DDR of the problem.
Using a consistent T matrix, the amplifications for the FIC/SUPG and the FIC RC/OSS methods
for �=1.0 and the wave number �0=7.5 are ≈0.7 and 0.3, respectively, after 3 s (Figure 2).
The corresponding values for the T-lumped case are ≈0.4 and 0.32. The numerical results are in
agreement with this prediction. We note that the numerical damping associated with the FIC/SUPG
method is less than that of the FIC RC/OSS method for the same value of �. An interesting result
is that when expressions (29) and (35) for � are used for the FIC RC/OSS method, no damping
takes place as it behaves similar to the Galerkin method in the interior domain. The numerical
solution in this case coincides with that shown for the Galerkin method.

6.4. Example 4

In this example we explore the performance of the stabilization parameter � given by Equations
(29) and (35) for the steady-state problem using the FIC RC/OSS method. The domain of interest
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Figure 15. Solution at 3 s for the Galerkin, FIC/SUPG and FIC RC/OSS methods using a
consistent T matrix and for Courant numbers 0.1, 0.4 and 1.0; time discretization performed

by Crank–Nicholson scheme. �=1.0 is used.
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Figure 16. Sine wave: solutions at 1 and 3 s for the Galerkin, FIC/SUPG and FIC RC/OSS methods
using a lumped (on left) and consistent (on right) T matrices; time discretization performed by

Crank–Nicholson scheme. �=1.0 is used.

is x ∈[0.0,1.0]. The problem data are k=0.001, u=1.0 and f =1.0. For the ease of notation and
further reference, we define the following:

�a =
[
coth(�)− 1

�

]

�b=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

4

[1−e2�]
[
coth(�)− 1

�

]
element 1

4

[1−e−2�]
[
coth(�)− 1

�

]
element n

−1

sinh2(�)

[
coth(�)− 1

�

]
else

First, we study the solution on a uniform mesh consisting of 20 linear elements (�=0.05). We
consider the cases when f =0 and 1.0. The numerical solutions of the FIC/SUPG method using
the stabilization parameter as �a and of the FIC RC/OSS method using �a and �b are presented
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Figure 17. Steady-state solution on uniform and non-uniform grids for the FIC/SUPG and FIC RC/OSS
methods. �a :=[coth(�)−�−1]. �b is evaluated using Equations (29) and (35).

in Figure 17. We note that the new definition for the stabilization parameter �b is optimal for the
uniform mesh. The boundary correction introduced in Equation (35) also takes effect.

Next, we study the solution on a non-uniform grid consisting of 15 elements. The node coordi-
nates of the discrete 1D space are given by x= {0, 0.095, 0.191, 0.2866, 0.382, 0.477, 0.573, 0.656,
0.728, 0.789, 0.841, 0.885, 0.922, 0.953, 0.979, 1}. We note that the solution of the FIC/SUPG
method is superior to that obtained by the FIC RC/OSS method. The latter method gives the sharp
boundary oscillations using the parameter �a (also appears on uniform grids). The solution of the
FIC RC/OSS method using �b on a non-uniform grid is slightly corrupted with weak node-to-node
spurious oscillations.

7. CONCLUSION

A detailed transient analysis of a consistency recovery method (FIC RC/OSS) with respect to
the Galerkin and FIC/SUPG methods has been done. The discrete dispersion relations for the
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above methods using the trapezoidal and BDF2 time integration schemes are presented. The phase
departure wave number (�d) is greater when a consistent matrix for the transient terms is used.
�d proportionally influences the range of wave numbers that have a group velocity close to the
convection velocity. The DDR plots predict that the gain in the value of �d from the lumped T
case to the consistent T case gradually decreases with the Courant number (C). An exception to
this is on a certain lower range of C for the FIC/SUPG method. Unfortunately, this gain is seldom
realized as those higher wave numbers are damped away. The contour plots of log[�(|�∗

h−�∗|)] are
very similar for the Galerkin, FIC/SUPG and the FIC RC/OSS methods except for the exception
mentioned earlier. Neither is the change significant with the choice of the time integration schemes
considered. This suggests that the role of the stabilization terms in the improvement of the DDR
is insignificant and the enhancement can be achieved only by virtue of the resolution in space and
time. It is shown that for the same value of the stabilization parameter (�), the damping associated
with the FIC RC/OSS method is slightly greater than that of the FIC/SUPG method.

It is shown that, unlike the FIC/SUPG method, the FIC RC/OSS method introduces a certain
rearrangement in the equation stencils at nodes on and adjacent to the domain boundary. Thus, using
a uniform expression for � will lead to localized oscillations at the boundary. These oscillations are
notable in the convection-dominated case. When diffusion is at par with convection, the solution
has a smooth profile and these local oscillations are insignificant even though they exist. A proposal
for � that gives optimal results for the steady-state 1D convection–diffusion problem on uniform
grids is made for the FIC RC/OSS method. An interesting result is that when the new expressions
for � are used for the FIC RC/OSS method, no damping takes place as �≈0 in the domain interior.
The numerical solution in the transient case coincides with that for the Galerkin method and in
the steady state, unlike the Galerkin method, it is stable. Unfortunately, using this new expression
for � dispersion errors, whenever present (for instance, the transport of a square pulse), cannot be
controlled and also the steady-state solution has weak node-to-node oscillations on a non-uniform
grid. On the basis of these results, it appears that with respect to the stabilization of convection,
the numerical performance of the FIC/SUPG method is better as one can control to some extent
the dispersive errors and at the same time we can assure the stability of the steady-state solution.
Ongoing research proceeds in the direction of finding an expression for � for the FIC RC/OSS
method ensuring a non-oscillatory solution for irregular meshes. In future work we also plan to
study the effect of using an alternative definition for � involving the diffusive and transient terms.
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